A piece of wire x inches long will be bent into the shapes below. Write an expression for the enclosed area of a circle in terms of x.

A piece of wire x inches long will be bent into the shapes below Write an expression for the enclosed area of a circle in terms of x class=

Respuesta :

irspow
The area of a circle is:

A=px^2 not 4px

Area of the circle =[tex]\frac{x^2}{4\pi } \; square \; inches[/tex]

Area of square = [tex]\frac{x^2}{16}[/tex] square inches

Given :

A piece of wire that is x inches long .  It is bent into shape of a circle

Perimeter of circle = x inches

we know that , perimeter of circle =[tex]2\pi r[/tex]

[tex]2\pi r=x\\solve \; for \; r\\divide \; both \; sides \; by \; 2\pi \\r=\frac{x}{2\pi } \\r=\frac{x}{2\pi }[/tex]

Now we find area of the circle using the radius

[tex]Area =\pi r^2\\Area=\pi (\frac{x}{2\pi } )^2\\Area=\pi (\frac{x^2}{4\pi ^2} )\\\\Area=\frac{x^2}{4\pi }[/tex]

Area of the circle =[tex]\frac{x^2}{4\pi } \; square \; inches[/tex]

Perimeter of square = 4(side)= 4s

4s=x

Divide both sides by 4

[tex]s=\frac{x}{4}[/tex]

Area of square =[tex]s^2=\frac{x}{4} ^2=\frac{x^2}{16}[/tex]

Area of square = [tex]\frac{x^2}{16}[/tex]

Learn more : brainly.com/question/4450298