Respuesta :
This sequence is:
a(n)=-11(-4)^(n-1)
The sum of the sequence is:
s(n)=-11(1--4^n)/(1--4)
s(n)=-11(1--4^n)/5
so for the first seven terms
s(7)=-11(1--4^7)/5
s(7)=-11(1+16384)/5
s(7)=-11(16385)/5
s(7)=-36047 B.
a(n)=-11(-4)^(n-1)
The sum of the sequence is:
s(n)=-11(1--4^n)/(1--4)
s(n)=-11(1--4^n)/5
so for the first seven terms
s(7)=-11(1--4^7)/5
s(7)=-11(1+16384)/5
s(7)=-11(16385)/5
s(7)=-36047 B.
Answer: -36047
Step-by-step explanation: [tex]a_{1}[/tex]=-11
r=common ratio= -4 and n=number of terms=7
sum of geometric series= [tex]\frac{a_{1}(1-r^{n} ) }{1-r}[/tex]
=-11×[tex]\frac{1-(-4)^{7} }{1-(-4)}[/tex]
= [tex]\frac{-180235}{5}[/tex]
= -36047