The base of a parallelogram is 8 units, and the height is 5 units. A segment divides the parallelogram into two identical trapezoids. The height of each trapezoid is 5 units. Draw the parallelogram and the two trapezoids on the grid shown. Then find the area of one of the trapezoids. *The grid is a normal grid*

Respuesta :

so it is a line of symmetry. 8x5=40 so the area of one is 40.
 
aachen

Answer:

20 sq.units

Step-by-step explanation:

Given: The base of a parallelogram is 8 units, and the height is 5 units. A segment divides the parallelogram into two identical trapezoids. The height of each trapezoid is 5 units

To Find: Area of one of the trapezoid.

Solution: Consider the file attached with solution.

In Parallelogram ABCD,

[tex]\text{CD}[/tex]=[tex]8\text{unit}[/tex]

 [tex]\text{height}=5\text{unit}[/tex]

therefore,

area of parallelogram [tex]area(\text{ABCD})=\text{base}\times\text{height}[/tex]

                                                            [tex]8\times5[/tex]

                                   [tex]area(\text{ABCD})[/tex]=[tex]40\text{unit}[/tex]

Segment EF divides parallelogram in two identical trapezoid AEFD and CFEB

therefore,

[tex]area(\text{AEFD})=area(\text{CFEB})[/tex]

also,

[tex]area(\text{AEFD})+area(\text{CFEB})=area(\text{ABCD})[/tex]

now area of one of the trapezoid [tex]\text{AEFD}[/tex]

[tex]2\times area(\text{AEFD})=area(\text{ABCD})[/tex]

[tex]area(\text{AEFD})=\frac{area(\text{ABCD})}{2}[/tex]

[tex]area(\text{AEFD})=\frac{40}{2}=20[/tex]

The area of trapezoid is [tex]20\text{sq.units}[/tex]

Ver imagen aachen

Otras preguntas