so hmm the first term is -2
and if we divide one term by the term before it, we'd get the "common ratio" "r"
so hmm say -32/8 that gives us -4, so r = -4
thus [tex]\bf n^{th}\textit{ term of a geometric sequence}\\\\
a_n=a_1r^{n-1}\qquad
\begin{cases}
a_1=\textit{first term}\\
r=\textit{common ratio}\\
----------\\
a_1=-2\\
r=-4
\end{cases}\implies a_n=-2(-4)^{n-1}[/tex]