Part B) Let Y₁, Y2,..., Yn be a random sample from a population with probability density function of the form 0-104-1 exp{-}, if y> 0, fy (y) = 0, O.W.. 72 Show that Y = Y; is a consistent estimator of the parameter 0 < # < [infinity]. [5 Points] Part B) Let Y₁, Y2,..., Yn be a random sample from a population with probability density function of the form 0-104-1 exp{-}, if y> 0, fy (y) = 0, O.W.. 72 Show that Y = Y; is a consistent estimator of the parameter 0 < # < [infinity]. [5 Points] Problem 3. (No credit will be given if you do not show your work. Points will be deducted if you do not clearly define all your variables and events. Lastly, you will also be graded on neatness.) Part A) Let Y₁, Y2,..., Yn be a random sample from a population with probability density function of the form exp{-(y-c)}, if y>c, fy (y) = 0, O.W.. Show that Y(1) = min {Y₁, Y₂,..., Yn} is a consistent estimator of the parameter -[infinity]