Respuesta :
Answer:
[tex]\sf 9x + 3y + 13 = 0[/tex]
Step-by-step explanation:
Let's find the coordinates of point C first, which divides the line segment AB in the ratio 2:1.
The coordinates of point C can be found using the section formula:
[tex]\sf C\left(\dfrac{2x_2 + 1x_1}{2 + 1}, \dfrac{2y_2 + 1y_1}{2 + 1}\right)[/tex]
Given A(2, 3) and B(-4, 1), substitute these values:
[tex]\sf C\left(\dfrac{2(-4) + 1(2)}{3}, \dfrac{2(1) + 1(3)}{3}\right)[/tex]
[tex]\sf C\left(\dfrac{-8 + 2}{3}, \dfrac{2 + 3}{3}\right)[/tex]
[tex]\sf C\left(\dfrac{-6}{3}, \dfrac{5}{3}\right)[/tex]
[tex]\sf C(-2, \dfrac{5}{3})[/tex]
Now, we have the coordinates of point C, which are (-2, 5/3).
The slope of the line AB can be found using the slope formula:
[tex]\sf m_{AB} = \dfrac{y_2 - y_1}{x_2 - x_1}[/tex]
[tex]\sf m_{AB} = \dfrac{1 - 3}{-4 - 2} = \dfrac{-2}{-6} = \dfrac{1}{3}[/tex]
The slope of a line perpendicular to AB is the negative reciprocal of the slope of AB. So, the slope ([tex]\sf m[/tex]) of the line passing through C and perpendicular to AB is [tex]\sf -3[/tex].
Now, we have the slope ([tex]\sf -3[/tex]) and a point (C: [tex]\sf (-2, \dfrac{5}{3})[/tex]). We can use the point-slope form of the equation of a line:
[tex]\sf y - y_1 = m(x - x_1)[/tex]
Substitute [tex]\sf m = -3[/tex] and [tex]\sf (x_1, y_1) = (-2, \dfrac{5}{3})[/tex]:
[tex]\sf y - \dfrac{5}{3} = -3(x + 2)[/tex]
Multiply through by 3 to clear the fraction:
[tex]\sf 3y - 5 = -9x - 18[/tex]
Rearrange to the standard form:
[tex]\sf 9x + 3y + 13 = 0[/tex]
So, the equation of the line passing through point C and perpendicular to AB is
[tex]\sf 9x + 3y + 13 = 0[/tex]
Answer:
[tex]9x+3y+13=0[/tex]
Step-by-step explanation:
The point C divides the line segment AB joining the points A(2, 3) and B(-4, 1) in the ratio 2 : 1.
To determine the equation of the line passing through point C and perpendicular to AB, we need to find the coordinates of point C and the slope of the perpendicular line.
Coordinates of Point C
The section formula is a mathematical expression that determines the coordinates of a point dividing a line segment into two parts in a given ratio.
[tex]\boxed{\begin{array}{l}\underline{\textsf{Section Formula}}\\\\P(x,y)=\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$(x_1, y_1)$ and $(x_2, y_2)$ are the endpoints of the line segment.}\\\phantom{ww} \bullet\;\textsf{Point $P$ divides the segment in the ratio $m : n$.}\end{array}}[/tex]
In this case:
- P = C
- (x₁, y₁) = Point A = (2, 3)
- (x₂, y₂) = Point B = (-4, 1)
- m : n = 2 : 1
Substitute the values into the section formula:
[tex]C(x,y)=\left(\dfrac{(2)(-4)+(1)(2)}{2+1},\dfrac{(2)(1)+(1)(3)}{2+1}\right)[/tex]
[tex]C(x,y)=\left(\dfrac{-8+2}{3},\dfrac{2+3}{3}\right)[/tex]
[tex]C(x,y)=\left(\dfrac{-6}{3},\dfrac{5}{3}\right)[/tex]
[tex]C(x,y)=\left(-2,\dfrac{5}{3}\right)[/tex]
Therefore, the coordinates of point C are:
[tex]C\left(-2,\dfrac{5}{3}\right)[/tex]
Slope of the Perpendicular Line
The slope of line segment AB can be found by substituting the endpoints of the line segment into the slope formula.
[tex]\boxed{\begin{array}{l}\underline{\textsf{Slope formula}}\\\\\large\text{$m=\dfrac{y_2-y_1}{x_2-x_1}$}\\\\\textsf{where:}\\\phantom{w}\bullet\;\;m\; \textsf{is the slope.}\\\phantom{w}\bullet\;\;(x_1,y_1)\;\textsf{and}\;(x_2,y_2)\;\textsf{are two points on the line.}\end{array}}[/tex]
In this case:
- (x₁, y₁) = Point A = (2, 3)
- (x₂, y₂) = Point B = (-4, 1)
Therefore:
[tex]m_{AB}=\dfrac{1-3}{-4-2}=\dfrac{-2}{-6}=\dfrac{1}{3}[/tex]
So, the slope of line segment AB is:
[tex]m_{AB}=\dfrac{1}{3}[/tex]
The slope of a line perpendicular to AB is the negative reciprocal of the slope of AB. So, the slope of the line perpendicular to AB is:
[tex]m=\dfrac{-1}{\frac{1}{3}}=-3[/tex]
Equation of the Line
Now that we have the slope and the coordinates of point C, we can substitute these values into the point-slope form of a linear equation:
[tex]\begin{aligned}y-y_1&=m(x-x_1)\\\\y-\dfrac{5}{3}&=-3(x-(-2))\\\\3y-5&=-9(x+2)\\\\3y-5&=-9x-18\\\\3y-5+9x+18&=-9x-18+9x+18\\\\9x+3y+13&=0\end{aligned}[/tex]
Therefore, the equation of the line that passes through point C and is perpendicular to AB is:
[tex]\Large\boxed{\boxed{9x+3y+13=0}}[/tex]