Respuesta :
Interval: [tex][0,2][/tex]
Partition: [tex]\left[0,\dfrac25\right]\cup\left[\dfrac25,\dfrac45\right]\cup\left[\dfrac45,\dfrac65\right]\cup\left[\dfrac65,\dfrac85\right]\cup\left[\dfrac85,2\right][/tex]
Midpoints: [tex]\left\{\dfrac15,\dfrac35,1,\dfrac75,\dfrac95\right\}[/tex]
Value of [tex]f(x)[/tex] at the midpoints: [tex]\left\{\dfrac{126}{25},\dfrac{134}{25},6,\dfrac{174}{25},\dfrac{206}{25}\right\}[/tex]
So the definite integral is approximated by the sum
[tex]\displaystyle\int_0^2(x^2+5)\,\mathrm dx=\frac25\left(\dfrac{126}{25}+\dfrac{134}{25}+6+\dfrac{174}{25}+\dfrac{206}{25}\right)=\dfrac{316}{25}=12.64[/tex]
Compare to the actual value of the integral,
[tex]\displaystyle\int_0^2(x^2+5)\,\mathrm dx=\dfrac{38}3\approx12.67[/tex]
Partition: [tex]\left[0,\dfrac25\right]\cup\left[\dfrac25,\dfrac45\right]\cup\left[\dfrac45,\dfrac65\right]\cup\left[\dfrac65,\dfrac85\right]\cup\left[\dfrac85,2\right][/tex]
Midpoints: [tex]\left\{\dfrac15,\dfrac35,1,\dfrac75,\dfrac95\right\}[/tex]
Value of [tex]f(x)[/tex] at the midpoints: [tex]\left\{\dfrac{126}{25},\dfrac{134}{25},6,\dfrac{174}{25},\dfrac{206}{25}\right\}[/tex]
So the definite integral is approximated by the sum
[tex]\displaystyle\int_0^2(x^2+5)\,\mathrm dx=\frac25\left(\dfrac{126}{25}+\dfrac{134}{25}+6+\dfrac{174}{25}+\dfrac{206}{25}\right)=\dfrac{316}{25}=12.64[/tex]
Compare to the actual value of the integral,
[tex]\displaystyle\int_0^2(x^2+5)\,\mathrm dx=\dfrac{38}3\approx12.67[/tex]
The approximated area of the region is an estimate of the area covered by the region
The approximated area of the region is 12.64 square units
The given parameters are:
[tex]\mathbf{Interval = [0,2]}[/tex]
[tex]\mathbf{n = 5}[/tex] --- the sub intervals
[tex]\mathbf{f(x) = x^2 + 5}[/tex] --- the function
Start by calculating the length of each partition
[tex]\mathbf{L = \frac{2 - 0}{5} = \frac 25}[/tex]
So, the partitions are:
[tex]\mathbf{P = [0,\frac 25]\ u\ [\frac 25,\frac 45]\ u\ [\frac 45,\frac 65]\ u\ [\frac 65,\frac 85]\ u\ [\frac 85,2]}[/tex]
Calculate the midpoint of each partition
[tex]\mathbf{x = \{\frac 15, \frac 35, 1 ,\frac 75, \frac 95\}}[/tex]
Calculate f(x) at the midpoints
[tex]\mathbf{f(\frac 15) = (\frac 15)^2 + 5 = 5.04}[/tex]
[tex]\mathbf{f(\frac 35) = (\frac 35)^2 + 5 = 5.36}[/tex]
[tex]\mathbf{f(1) = 1^2 + 5 = 6}[/tex]
[tex]\mathbf{f(\frac 75) = (\frac 75)^2 + 5 = 6.96}[/tex]
[tex]\mathbf{f(\frac 95) = (\frac 95)^2 + 5 = 8.24}[/tex]
Represent the function as a definite integral as follows:
[tex]\mathbf{\int\limits^2_0 {(x^2 + 5)} \, dx = \frac 25(5.04 + 5.36 + 6 + 6.96 + 8.24)}[/tex]
[tex]\mathbf{\int\limits^2_0 {(x^2 + 5)} \, dx = \frac 25(31.6)}[/tex]
Divide
[tex]\mathbf{\int\limits^2_0 {(x^2 + 5)} \, dx = 2 \times 6.32}[/tex]
[tex]\mathbf{\int\limits^2_0 {(x^2 + 5)} \, dx = 12.64}[/tex]
Hence, the approximated area of the region is 12.64 square units
Read more about approximated areas at:
https://brainly.com/question/16654180