22. D
j(-5, 6) & slope (m) = -4
[tex]y-y_1=m(x-x_1)
\\y-6=-4(x-(-5))
\\y-6=-4(x+5)
\\y-6=-4x-20
\\y=-4x-20+6
\\y=-4x-14[/tex]
***************************************************************
23. D
(4, -4) (1, 2)
First, we have to find the slope
[tex]m= \frac{y_2-y_1}{x_2-x_1}
\\\\m= \frac{2 - (-4)}{1-4}
\\\\m=\frac{2+4}{-3}
\\\\m=\frac{6}{-3}
\\\\m=-2 [/tex]
[tex]y-y_1=m(x-x_1) \\
y-(-4)=-2(x-4)
\\y+4=-2(x-4)[/tex]
*****************************************************************
24. D
First, we have to find the slope
y = mx + b
where m is the slope and b is the y intercept.
y = -7x + 15 ---> m = -7
a parallel line has an identical slope, then the parallel line through (9, -6) will have slope m = -7
(9, -6) & m = -7
[tex]y - y_1=m(x-x_1)
\\y-(-6)=-7(x-9)
\\y+6=-7(x-9)
[/tex]
***************************************************************
25. I cant do it bcz the point "S" doesnt appear in the image
"The slopes of two perpendicular lines are negative reciprocals."
**********************************************************
26. C
E(8, 1)
Vertical lines always have the formula "x = (x coordinate)" and horizontal lines always have the formula "y = (y coordinate)"
x = 8