Respuesta :

[tex]x= \frac{ \pi }{4} +2 \pi n, \frac{7 \pi }{4} +2 \pi n, \frac{3 \pi }{4} +2 \pi n, \frac{5 \pi }{4} +2 \pi n[/tex]
[tex]\bf sec^2(x)-2=0\implies \cfrac{1^2}{cos^2(x)}-2=0\implies \cfrac{1}{cos^2(x)}=2 \\\\\\ \cfrac{1}{2}=cos^2(x)\implies \sqrt{\cfrac{1}{2}}=cos(x) \\\\\\ cos^{-1}\left(\frac{1}{\sqrt{2}} \right)=cos^{-1}[cos(x)]\implies cos^{-1}\left(\frac{\sqrt{2}}{2} \right)=\measuredangle x \\\\\\ \measuredangle x = \begin{cases} \frac{\pi }{4}\\\\ \frac{7\pi }{4} \end{cases}[/tex]

now, those are the angles from [0, 2π], now, to include "all", using the "n" notation, for all coterminal angles

well, all you do, as before, add 2π or +2π to each

well....  7π/4 is really -π/4 if you use negative angles

thus    [tex]\bf x=\pm \frac{\pi }{4}+2\pi n \qquad \textit{ where "n" is an integer}[/tex]