[tex]\bf \cfrac{p^2-9p}{p^2-4p-45}-\cfrac{2}{p+5}\qquad
\begin{array}{lcclll}
p^2&-4p&-45\\
&\uparrow &\uparrow \\
&5-9&5\cdot -9
\end{array}\qquad thus
\\\\\\
\cfrac{p\underline{(p-9)}}{\underline{(p-9)}(p+5)}-\cfrac{2}{p+5}\implies \cfrac{p}{p+5}-\cfrac{2}{p+5}\impliedby \textit{LCD of p+5}
\\\\\\
\cfrac{p-2}{p+5}[/tex]