Respuesta :
If this is a regular triangle and not a right triangle, the answer would be approximately 44.66 degrees.
Answer:
The measure of angle B is 44.66°.
Step-by-step explanation:
Given information: a = 11, b = 12, and c = 17
According to the law of cosine
[tex]\cos B=\frac{a^2+c^2-b^2}{2ac}[/tex]
Where, a, b and c are sides of the triangle.
[tex]\cos B=\frac{(11)^2+(17)^2-(12)^2}{2(11)(17)}[/tex]
[tex]\cos B=\frac{121+289-144}{374}[/tex]
[tex]\cos B=\frac{266}{374}[/tex]
[tex]\cos B=0.711229946524[/tex]
[tex]B=\cos^{-1} 0.711229946524[/tex]
[tex]B=44.6649245311^{\circ}[/tex]
[tex]B\approx 44.66^{\circ}[/tex]
Therefore, the measure of angle B is 44.66°.