Respuesta :
hello :
| -4-√2i | = √((-4)² +(-√2)²) =√(16+2) =√18 = √(9×2) = √9 × √2 = 3√2.. (answer B)
| -4-√2i | = √((-4)² +(-√2)²) =√(16+2) =√18 = √(9×2) = √9 × √2 = 3√2.. (answer B)
Answer-
The absolute value of the complex number is [tex]3\sqrt2[/tex]
Solution-
The given complex number is,
[tex]=-4-\sqrt2i[/tex]
The absolute value or modulus of a complex number a+bi, is defined as the distance between the origin (0,0) and the point (a,b) in the complex plane.
Its value is calculated by,
[tex]|a+bi|=\sqrt{a^2+b^2}[/tex]
So,
[tex]|-4-\sqrt2i|\\\\=\sqrt{(-4)^2+(-\sqrt2)^2}\\\\=\sqrt{16+2}\\\\=\sqrt{18}\\\\=3\sqrt2[/tex]