Respuesta :

[tex]\bf \cfrac{|x|}{x-1}\iff \cfrac{\sqrt{x^2}}{x-1}\iff \cfrac{(x^2)^{\frac{1}{2}}}{x-1} \\\\\\ \textit{using the quotient rule} \\\\\\ \cfrac{dy}{dx}=\cfrac{\frac{1}{2}(x^2)^{-\frac{1}{2}}\cdot 2x(x-1)-(x^2)^{\frac{1}{2}}\cdot 1}{(x-1)^2}[/tex]

[tex]\bf \cfrac{dy}{dx}=\cfrac{\frac{x(x-1)-(x^2)^{\frac{1}{2}}}{(x^2)^{\frac{1}{2}}}}{(x-1)^2}\implies \cfrac{dy}{dx}=\cfrac{x(x-1)-(x^2)^{\frac{1}{2}}}{(x^2)^{\frac{1}{2}}(x-1)^2} \\\\\\\cfrac{dy}{dx}=\cfrac{x(x-1)-|x|}{|x|(x-1)^2}[/tex]