Respuesta :
so hmm check the picture below
the first part, on the left is the guywire one
so let's use the law of sines
[tex]\bf \textit{Law of sines} \\ \quad \\ \cfrac{sin(\measuredangle A)}{a}=\cfrac{sin(\measuredangle B)}{b}=\cfrac{sin(\measuredangle C)}{c}\\\\ -----------------------------\\\\ \cfrac{sin(56^o)}{43}=\cfrac{sin(B)}{51}\implies \cfrac{51\cdot sin(56^o)}{43}=sin(B) \\\\\\ sin^{-1}\left[ \cfrac{51\cdot sin(56^o)}{43} \right]=\measuredangle B\implies 79.5\approx B[/tex]
now, if the angle B is 79.5 and the other angle is 56, then A is the slack from 180, or 180 - 79.5 - 56, or 44.5
so, let's see what's the opposite side of A, or "x"
[tex]\bf \cfrac{sin(56^o)}{43}=\cfrac{sin(A)}{x}\implies \cfrac{sin(56^o)}{43}=\cfrac{sin(44.5^o)}{x}\\\\\\x=\cfrac{43\cdot sin(44.5^o)}{sin(56^o)}[/tex]
---------------------------------------------------------------------------
now, the second one, you had in the picture, the one of the balloon
that's the right-side in the picture below
again, let's use the law of sines
[tex]\bf \cfrac{sin(55^o)}{105}=\cfrac{sin(B)}{110}\implies \cfrac{110\cdot sin(55^o)}{105}=sin(B) \\\\\\ sin^{-1}\left[ \cfrac{110\cdot sin(55^o)}{105} \right]=\measuredangle B\implies 59.1\approx B[/tex]
so if B is 59.1, angle A picks up the slack from 180, or 180 - 59.1 - 55, or 65.9
so, let's see what "x" is then [tex]\bf \cfrac{sin(55^o)}{105}=\cfrac{sin(A)}{x}\implies \cfrac{sin(55^o)}{105}=\cfrac{sin(65.9^o)}{x} \\\\\\ x=\cfrac{105\cdot sin(65.9^o)}{sin(55^o)}[/tex]
on both cases, since the angles are in degrees, make sure your calculator is in Degree mode
the first part, on the left is the guywire one
so let's use the law of sines
[tex]\bf \textit{Law of sines} \\ \quad \\ \cfrac{sin(\measuredangle A)}{a}=\cfrac{sin(\measuredangle B)}{b}=\cfrac{sin(\measuredangle C)}{c}\\\\ -----------------------------\\\\ \cfrac{sin(56^o)}{43}=\cfrac{sin(B)}{51}\implies \cfrac{51\cdot sin(56^o)}{43}=sin(B) \\\\\\ sin^{-1}\left[ \cfrac{51\cdot sin(56^o)}{43} \right]=\measuredangle B\implies 79.5\approx B[/tex]
now, if the angle B is 79.5 and the other angle is 56, then A is the slack from 180, or 180 - 79.5 - 56, or 44.5
so, let's see what's the opposite side of A, or "x"
[tex]\bf \cfrac{sin(56^o)}{43}=\cfrac{sin(A)}{x}\implies \cfrac{sin(56^o)}{43}=\cfrac{sin(44.5^o)}{x}\\\\\\x=\cfrac{43\cdot sin(44.5^o)}{sin(56^o)}[/tex]
---------------------------------------------------------------------------
now, the second one, you had in the picture, the one of the balloon
that's the right-side in the picture below
again, let's use the law of sines
[tex]\bf \cfrac{sin(55^o)}{105}=\cfrac{sin(B)}{110}\implies \cfrac{110\cdot sin(55^o)}{105}=sin(B) \\\\\\ sin^{-1}\left[ \cfrac{110\cdot sin(55^o)}{105} \right]=\measuredangle B\implies 59.1\approx B[/tex]
so if B is 59.1, angle A picks up the slack from 180, or 180 - 59.1 - 55, or 65.9
so, let's see what "x" is then [tex]\bf \cfrac{sin(55^o)}{105}=\cfrac{sin(A)}{x}\implies \cfrac{sin(55^o)}{105}=\cfrac{sin(65.9^o)}{x} \\\\\\ x=\cfrac{105\cdot sin(65.9^o)}{sin(55^o)}[/tex]
on both cases, since the angles are in degrees, make sure your calculator is in Degree mode
