Respuesta :
x= 5 cost ===> cost = x/5 & y= 5 sint ===> sint = y/5
Let's square cost & sint
cos^2t = (x/5)^2 & sin^2t = (y/5)^2
Add up both: cos^2t + sin^2t = (x^2 +y^2)/25 ====cos^2t + sin^2t =1
hence (x^2+y^2)/25 =1 or x^2+y^2=25
Let's square cost & sint
cos^2t = (x/5)^2 & sin^2t = (y/5)^2
Add up both: cos^2t + sin^2t = (x^2 +y^2)/25 ====cos^2t + sin^2t =1
hence (x^2+y^2)/25 =1 or x^2+y^2=25
After eliminating the parameters in x = 5 cos t and y = 5 sin t, we have;
x²/25 + y²/25 = 1
Parametric functions
x/5 = cos t
y/5 = sin t
From trigonometric identities, we know that;
sin²t + cos²t = 1
(y/5)² + (x/5)² = 1
Thus;
x²/25 + y²/25 = 1
Thus, after eliminating the parameters, we have the answer as;
x²/25 + y²/25 = 1
Read more about parametric functions at; https://brainly.com/question/10165611