ANSWER
[tex]x = 10.2m[/tex]
EXPLANATION
We can use the sine rule to find the value of x.
From the ∆UVW,
[tex] \frac{x}{ \sin( 30 \degree)} = \frac{19}{ \sin( < \: UWV)} [/tex]
The sum of the interior angles of a triangle is 180°.
This implies that,
[tex]< \: UWV+30 \degree+81\degree=180\degree[/tex]
Group like terms and simplify to get,
[tex]< \: UWV=180\degree - 111\degree[/tex]
[tex]< \: UWV=69\degree [/tex]
[tex] \frac{x}{ \sin( 30 \degree)} = \frac{19}{ \sin( 69 \degree)} [/tex]
[tex] x = \frac{19}{ \sin( 69 \degree)} \times \sin(30 \degree) [/tex]
[tex]x = 10.2m[/tex]
to the nearest tenth.