Respuesta :
[tex]p(5)=2*5^2+4*5+11=2*25+20+11=50+31=81[/tex]
[tex]h(5)=4*5=20[/tex]
[tex]s(5)=10*5=50[/tex]
The answer: A
:)
[tex]h(5)=4*5=20[/tex]
[tex]s(5)=10*5=50[/tex]
The answer: A
:)
Answer:
Largest value is at p(5) is 81
Step-by-step explanation:
We have given three function [tex]p(x)= 2x^2+4x+11,h(x)=4x, s(x)=10x[/tex]
we need to check the largest value at [tex]x=5[/tex]
substitute [tex]x=5[/tex] in p(x) we will get [tex]p(5)=2\cdot5^2+4\cdot5+11[/tex] we will get [tex]p(5)=2\cdot25+4\cdot5+11[/tex]
[tex]p(5)=50+20+11=81[/tex]
Now, substitute [tex]x=5[/tex] in h(x) we wil get [tex]h(5)=4\cdot5[/tex] we will get [tex]h(5)=20[/tex]
Similarly, substitute [tex]x=5[/tex] in s(x) we will get [tex]s(5)=10\cdot5[/tex] we will get [tex]s(5)=50[/tex]
Now, comparing all the three values of [tex]p(5)[/tex], [tex]h(5)[/tex],[tex]s(5)[/tex]
Largest value is at p(5) is 81