contestada

Find the angle between vector u= 3i + sqrt 3j and vector v=-2i-5j to the nearest degree a) 82 degrees b) 38 degrees c) 142 degrees d) 98 degrees

Respuesta :

c) 142 degrees             I think                     

Answer:

The angle between u and v is 142°

C is correct

Step-by-step explanation:

Given: [tex]\vec{u}=3i+\sqrt{3}j[/tex]

[tex]\vec{v}=-2i-5j[/tex]

We need to find the angle between u and v vector.

Using dot product.

[tex]\vec{u}\cdot \vec{v}=|u||v|\cos\theta[/tex]

where,

[tex]\theta\text{ is angle between u and v}[/tex]

[tex](3i+\sqrt{3}j)\cdot (-2i-5j)=\sqrt{9+3}\cdot \sqrt{4+25}\cdot \cos\theta[/tex]

[tex]-6-5\sqrt{3}=\sqrt{348}\cos\theta[/tex]

[tex]\cos\theta=\dfrac{-6-5\sqrt{3}}{\sqrt{348}}[/tex]

[tex]\theta=\cos^{-1}(-0.7859)[/tex]

[tex]\theta=141.8[/tex]

Nearest degree

[tex]\theta=142^\circ[/tex]

Hence, The angle between u and v is 142°