Respuesta :
we have
[tex]f(x)=4x^{2}+48x+10[/tex]
Group terms that contain the same variable, and move the constant to the opposite side of the equation
[tex]f(x)-10=4x^{2}+48x[/tex]
Factor the leading coefficient
[tex]f(x)-10=4(x^{2}+12x)[/tex]
Complete the square. Remember to balance the equation by adding the same constants to each side
[tex]f(x)-10+144=4(x^{2}+12x+36)[/tex]
[tex]f(x)+134=4(x^{2}+12x+36)[/tex]
Rewrite as perfect squares
[tex]f(x)+134=4(x+6)^{2}[/tex]
[tex]f(x)=4(x+6)^{2}-134[/tex] ------> equation in vertex form
therefore
the answer is
[tex]f(x)=4(x+6)^{2}-134[/tex]