The first steps in writing f(x) = 4x2 + 48x + 10 in vertex form are shown. f(x) = 4(x2 + 12x) + 10 = 36 What is the function written in vertex form? f(x) = 4(x + 6)2 + 10 f(x) = 4(x + 6)2 – 26 f(x) = 4(x + 6)2 – 134 f(x) = 4(x + 6)2 + 154

Respuesta :

we have

[tex]f(x)=4x^{2}+48x+10[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]f(x)-10=4x^{2}+48x[/tex]

Factor the leading coefficient

[tex]f(x)-10=4(x^{2}+12x)[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]f(x)-10+144=4(x^{2}+12x+36)[/tex]

[tex]f(x)+134=4(x^{2}+12x+36)[/tex]

Rewrite as perfect squares

[tex]f(x)+134=4(x+6)^{2}[/tex]

[tex]f(x)=4(x+6)^{2}-134[/tex] ------> equation in vertex form

therefore

the answer is

[tex]f(x)=4(x+6)^{2}-134[/tex]

Answer:

c

Step-by-step explanation:

edge