Respuesta :

[tex]\bf csc(\theta)=\cfrac{1}{sin(\theta)} \qquad % secant sec(\theta)=\cfrac{1}{cos(\theta)}\\\\ -----------------------------\\\\ sec(x)-csc(x)=\cfrac{4}{3}\implies \cfrac{1}{cos(x)}-\cfrac{1}{sin(x)}=\cfrac{4}{3} \\\\\\ \cfrac{sin(x)-cos(x)}{cos(x)sin(x)}=\cfrac{4}{3}[/tex]

thus, as a matter of ratio, one can say that sin(x)-cos(x) = 4 then