[tex]\bf log_{{ a}}(xy)\implies log_{{ a}}(x)+log_{{ a}}(y)
\\ \quad \\
% Logarithm of rationals
log_{{ a}}\left( \frac{x}{y}\right)\implies log_{{ a}}(x)-log_{{ a}}(y)
\\ \quad \\
% Logarithm of exponentials
log_{{ a}}\left( x^{{ b}} \right)\implies {{ b}}\cdot log_{{ a}}(x)\qquad
and\qquad a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^{ n}}\\\\
-----------------------------\\\\[/tex]
[tex]\bf \cfrac{1}{2}\left[ log_x(4)+log_x(y) \right]-3log_x(z)
\\\\\\
\cfrac{1}{2}\left[ log_x(4\cdot y) \right]-3log_x(z)\implies log_x\left[ (4y)^{\frac{1}{2}} \right]-log_x(z^3)
\\\\\\
log_x\left[ \cfrac{(4y)^{\frac{1}{2}}}{z^3} \right]\implies log_x\left[ \cfrac{\sqrt{4y}}{z^3} \right][/tex]