Find the values of the six trigonometric functions of an angle in standard position if the point with coordinates (6,-5) lies on its terminal side.

Respuesta :

This is an angle in the 4th quadrant
tan 0f this angle = opp/adj = -5/6
cotangent = 1/tan = -6/5

length of hypotenuse  = sqrt (6^2 + (-5)^2 ) =  sqrt 61

so sine = -5/sqrt61
and cosec = 1/sin =  -aqrt61/5

and cosine = 6/sqrt61
and secant = 1 / cos =  sqrt61 /6

Answer:

Given : The point with coordinates (6,-5) lies on its terminal side.

To find :  The values of the six trigonometric functions of an angle in standard position

Solution :

The coordinates (6,-5) lies in the 4 quadrant.

Refer the attached figure.

where x=6 is the base

y= -5 is the perpendicular

Applying Pythagoras theorem,

[tex]H^2=P^2+B^2[/tex]

[tex]H^2=(-5)^2+6^2[/tex]

[tex]H^2=25+36[/tex]

[tex]H=\sqrt{61}[/tex]

Now, finding trigonometric function

Note - In fourth quadrant only cos and sec is positive rest are negative.

1 )  [tex]\sin x= - \frac{P}{H}[/tex]

[tex]\sin x= - \frac{-5}{\sqrt{61}}[/tex]

[tex]\sin x= \frac{5}{\sqrt{61}}[/tex]

2) [tex]\csc x=\frac{1}{\sin x}[/tex]

[tex]\csc x=\frac{1}{\frac{5}{\sqrt{61}}}[/tex]

[tex]\csc x=\frac{\sqrt{61}}{5}[/tex]

3) [tex]\cos x= \frac{B}{H}[/tex]

[tex]\cos x=\frac{6}{\sqrt{61}}[/tex]

4) [tex]\sec x=\frac{1}{\cos x}[/tex]

[tex]\sec x=\frac{1}{\frac{6}{\sqrt{61}}}[/tex]

[tex]\sec x=\frac{\sqrt{61}}{6}[/tex]

5) [tex]\tan x= - \frac{P}{B}[/tex]

[tex]\tan x= - \frac{-5}{6}[/tex]

[tex]\tan x= \frac{5}{6}[/tex]

6) [tex]\cot x=\frac{1}{\tan x}[/tex]

[tex]\cot x=\frac{1}{\frac{5}{6}}[/tex]

[tex]\cot x=\frac{6}{5}[/tex]

Ver imagen tardymanchester