[tex]\bf \qquad \qquad \textit{ratio relations}
\\\\
\begin{array}{cccllll}
&Sides&Area&Volume\\
&-----&-----&-----\\
\cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3}
\end{array}\\\\
-----------------------------\\\\
volumes\to \cfrac{s^3}{s^3}\textit{ ratio of sides is then }\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\implies \cfrac{s}{s}
\\\\\\
volumes\to \cfrac{8}{27}\textit{ ratio of sides is then }\cfrac{\sqrt[3]{8}}{\sqrt[3]{27}}[/tex]
and surely, you know how much is that