Respuesta :
The total height of the vertical pole from ground is 37 ft
From the figure,
sin (Ф) = [tex] \frac{Perpendicular}{Hypotenuse} [/tex]
⇒ sin (40°) = [tex] \frac{x}{50} [/tex]
⇒ x = 50 × sin (40°)
⇒ x = 50 × 0.64
⇒ x = 32
Therefore, total height of pole is 32 + 5 = 37 ft
From the figure,
sin (Ф) = [tex] \frac{Perpendicular}{Hypotenuse} [/tex]
⇒ sin (40°) = [tex] \frac{x}{50} [/tex]
⇒ x = 50 × sin (40°)
⇒ x = 50 × 0.64
⇒ x = 32
Therefore, total height of pole is 32 + 5 = 37 ft

Answer: The total height of the vertical pole from ground is 37.135 ft
Step-by-step explanation:
Given : Length of support cable = 50 feet
Let x be the height of point where cable is attached from the ground.
We know that [tex]\sin\theta=\frac{\text{side opposite to }\theta}{\text{hypotenuse}}[/tex]
From the figure,
[tex]\sin40^{\circ}=\frac{MN}{MO}\\\Rightarrow\ 0.6427=\frac{x}{50}\\\Rightarrow\ x=50\times0.6427\\\Rightarrow\ x=32.135[/tex]
The total height of the pole = x+5= 32.135+5= 37.135 feet
Therefore, total height of pole is = 37.135 ft
