Respuesta :

1. First, put the range in order and then divide the set into quarters. In this case, quartiles are between numbers.
83, 85, 89,   l    91, 95, 104,  l   112, 118, 118,  l  125, 134, 138
Q
₁ = (89 + 91)/2 = 90
Q₂ = (104 + 112)/2 =108
Q₃ = (118 + 125)/2 = 121.5
Interquartile range (IQR) = Q₃ - Q₁
                                        = 121.5 - 90
                                 IQR = 31.5
2. To find the standard deviation follow the simple steps.
Formula in finding the standard deviation: (see attached file)
     Step 1. Work out the simple average of the numbers (mean)
                212 + 249 + 212 + 248 + 239 + 212 + 216 + 234 + 248
                                                 9
              = 2070
                     9
mean (
μ) = 230
    
    Step 2. Subtract the mean on each number and square the result.
212 - 230 = (-18)² = 324
249 
- 230 = ( 19)² = 361
212 
- 230 = (-18)² = 324
248 
- 230 = (18)²  = 324
239 
- 230 = (9)²    = 81
212 
- 230 = (-18)² =324
216 
- 230 = (-14)² =196
234 
- 230 = (4)²    =16
248 
- 230 = (18)²  =324

     Step 3. Add all the squared results and get the mean.
                  2274
                     9
       Variance = 252.6666667
    Step 4. Get the square root of the variance.
                  √252.6666667
                  = 15.89549202
     

Answer:

TO MAKE IT SHORT AND EASY BRO = 16.9