Is each line parallel, perpendicular, or neither parallel nor perpendicular to the line −x+4y=20?



Drag each choice into the boxes to correctly complete the table.

Is each line parallel perpendicular or neither parallel nor perpendicular to the line x4y20 Drag each choice into the boxes to correctly complete the table class=

Respuesta :

-x+4y=8: Parallel
4x+y=-1: Perpendicular
y=-1/4x+6: neither
y=-4x-3: Perpendicular

we have

[tex]-x+4y=20[/tex]

Isolate the variable y

[tex]4y=x+20[/tex]

[tex]y=\frac{1}{4}x+5[/tex]

the slope m of the given line is

[tex]m=\frac{1}{4}[/tex]

we know that

If two lines are parallel , then their slopes are the same

so

[tex]m1=m2[/tex]

if two lines are perpendicular, then the product of their slopes is equal to minus one

so

[tex]m1*m2=-1[/tex]

we will proceed to verify each case to determine the solution

case A) [tex]-x+4y=8[/tex]

Isolate the variable y

[tex]4y=x+8[/tex]

[tex]y=\frac{1}{4}x+2[/tex]

the slope  is

[tex]m2=\frac{1}{4}[/tex]

Compare the slope of the line of the case A) with the slope of the given line

[tex]m1=\frac{1}{4}[/tex]  -----> slope given line

[tex]m2=\frac{1}{4}[/tex] ----> slope line case A)

[tex]m1=m2[/tex] --------> the lines are parallel

case B) [tex]4x+y=-1[/tex]

Isolate the variable y

[tex]y=-4x-1[/tex]

the slope  is

[tex]m2=-4[/tex]

Compare the slope of the line of the case B) with the slope of the given line

[tex]m1=\frac{1}{4}[/tex]  -----> slope given line

[tex]m2=-4[/tex] ----> slope line case B)

[tex]m1*m2=\frac{1}{4}*-4=-1[/tex] --------> the lines are perpendicular

case C) [tex]y=-\frac{1}{4}x+6[/tex]

the slope  is

[tex]m2=-\frac{1}{4}[/tex]

Compare the slope of the line of the case C) with the slope of the given line

[tex]m1=\frac{1}{4}[/tex]  -----> slope given line

[tex]m2=-\frac{1}{4}[/tex] ----> slope line case C)

[tex]m1\neq m2[/tex]

[tex]m1*m2\neq-1[/tex]

therefore

the line case C) and the given line are neither parallel nor perpendicular

case D) [tex]y=-4x-3[/tex]

the slope  is

[tex]m2=-4[/tex]

Compare the slope of the line of the case D) with the slope of the given line

[tex]m1=\frac{1}{4}[/tex]  -----> slope given line

[tex]m2=-4[/tex] ----> slope line case D)

[tex]m1*m2=\frac{1}{4}*-4=-1[/tex] --------> the lines are perpendicular

the answer in the attached figure



Ver imagen calculista