Respuesta :

 (3^-4)(2^3)(3^2)  
----------------- 
(2^4)(3^-3)
I will keep this as simple as possible (for clarity). Any negative exponents should be switched from top to bottom and the negative sign removed from the exponent. 

(3^3)(2^3)(3^2)  
----------------- 
(2^4)(3^4)

Add the like terms in the numerator

(3^5)(2^3)  
---------- 
(2^4)(3^4)

Since we have powers of 3 and powers of 2 in the numerator and denominator we can add them together (just like when we reduce other fractions)  For example, x^4/x => x^3, or x^1/x^6 => 1/x^5

3/2

Final answer 3/2. 
The answer is:  "[tex] \frac{3}{2} [/tex]"
______________________________________________ 
          (or, write as: "1½" ; or,  "1.5").
______________________________________________
Explanation:
______________________________________________
We are asked to simplify the given expression:
______________________________________________
  →  [tex] \frac{3^{-4}×2^{3}×3^{2} }{2^{4}×3^{-3}} [/tex]  ;
______________________________________________
Note:  In the "numerator" :
_________________________
     2³  =  2 × 2 × 2  =  8 .

    3²  =  3 × 3  =  9 .
_________________________
Note:  In the "denominator" :
_________________________
     2⁴  =  2 × 2 × 2 × 2 = 16 .
_____________________________
     So, rewrite our expression; substituting "8" for "(2³)";
and substituting "9" for "(3²)" — [in the numerator] ;
and substituting:  "16" for "(2⁴)" — [in the denominator] ;
_____________________________________________________
   → AS FOLLOWS:
_____________________________________________________
     [tex] \frac{3^{-4}×2^{3}×3^{2} }{2^{4}×3^{-3}} [/tex]  ;

          =  [tex] \frac{3^{-4}×8×(9}{16×3^{-3}} [/tex] ;
_____________________________________________________
    Since we have an "8" in the "numerator"; and a "16" in the "denominator" —respectively;  and since both values, taken individually in the numerator—and taken individually in the denominator— are multiplied by other values as isolated numbers;  we can "cancel out" the "8" in the "numerator" to a "1"; and change the "16" in the "denominator" to a "2" ;  since:
            "16÷8 = 2" ; and since "8÷8=1" ;  that is: "8/16 = 1/2".  We can then "eliminate" the "1" in the "numerator";  since in the numerator, there are other values that are multiplied by this "1" ;  & any value multiplied by "1" is equal to that same value.
___________________________________________
So we can rewrite the expression, as follows:
___________________________________________
     [tex] \frac{3^{-4}×(9)}{2×3^{-3}} [/tex] ;  

Rearrange and rewrite as follows:
_______________________________________
        [tex] \frac{3^{-4}×(9)}{2×3^{-3}} [/tex] 

    =  [tex] \frac{(9) *{3^{-4}}{2×3^{-3}} [/tex] ;
____________________________________
    Note the following properties of exponents:
__________________________________________
           ([tex] \frac{a} {b} [/tex]   = [tex] \frac{ a^{n}}{b^{n}} [/tex]   ;  
                       (b ≠ 0) ; 
__________________________________________
           ([tex] a^{m} [/tex] ) =  a[tex] a^{(m*n)}} [/tex];
__________________________________________
           [tex] a^{m} a^{n} = a^{(m+n)} [/tex];

and especially
:

         [tex] \frac{ a^{m}}{ a^{n}} = a^{(m-n)} ; (a \neq 0) ;[/tex];

and especially:

           [tex] a^{-n} = \frac{1}{(a^{n) }} [/tex] ;  (a [tex] \neq 0); [/tex]);                       If "n" is a positive integer; and if "a" is a non-zero real number. 
   _____________________________________________________
           So;  (3⁴) / (3³)  = 3⁽⁽⁻⁴ ⁻ ⁽⁻³⁾⁾ = 3⁽⁻⁴ ⁺ ³⁾ = 3⁻¹  
                                         = [tex] \frac{1}{(3^{1})} = \frac{1}{3} ;[/tex] ;  
_______________________________________________________
           Rewrite the expression:
_________________________________________
           [tex] \frac{(9) *{3^{-4}}{2×3^{-3}} [/tex] ; 
 
               =  [tex] \frac{(9*1)}{(2*3)} ;
               = \frac{9}{6} ;
               = \frac{(9/3) }{(6/3)} ;
               = \frac{3}{2}[/tex] ; or; write as: " 1 ½ " ; or, write as: " 1.5 ".
_______________________________________________________