Which of the following statements is true? a. sin 30° = cos 30° b. sin 35° = cos 55° c. sin 60° = cos 60° d. sin 55° = cos 25°

Respuesta :

b. sin 35° = cos 55° is the correct answer i believe :)

Answer:

Only statement (b) is correct.

[tex]\sin 35^{\circ} = \cos 55^{\circ}[/tex]

Step-by-step explanation:

Given certain trigonometric equality , we have to check which statements are true.

We know , [tex]\sin (90-\theta)=\cos \theta[/tex]

We will check each statement one by one,

Consider,

a) [tex]\sin 30^{\circ} = \cos 30^{\circ}[/tex]

We know from trigonometric table that ,

[tex]\sin 30^{\circ} =\frac{1}{2}[/tex] and  [tex]\cos 30^{\circ}=\frac{\sqrt{3}}{2}[/tex]

Thus, [tex]\sin 30^{\circ} \neq \cos 30^{\circ}[/tex]

b) [tex]\sin 35^{\circ} = \cos 55^{\circ}[/tex]

Using above identity [tex]\sin (90-\theta)=\cos \theta[/tex]

[tex]\sin 35^{\circ} =\sin (90-55)^{\circ} =\cos55^{\circ} [/tex]

Thus, [tex]\sin 35^{\circ} = \cos 55^{\circ}[/tex]

c) [tex]\sin 60^{\circ} = \cos 60^{\circ}[/tex]

We know from trigonometric table that ,

[tex]\sin 60^{\circ} =\frac{\sqrt{3}}{2}[/tex] and  [tex]\cos 30^{\circ}=\frac{1}{2}[/tex]

Thus, [tex]\sin 60^{\circ} \neq \cos 60^{\circ}[/tex]

d) [tex]\sin 55^{\circ} = \cos 25^{\circ}[/tex]

Using above identity [tex]\sin (90-\theta)=\cos \theta[/tex]

[tex]\sin 55^{\circ} =\sin (90-35)^{\circ} =\cos35^{\circ} [/tex]

Thus, [tex]\sin 55^{\circ} \neq\cos 25^{\circ}[/tex]

Thus, only statement (b) is correct.