The correct option for the coordinates of end point of line segment is [tex]\fbox{\begin\\\ \bf option (b)\\\end{minispace}}[/tex].
Further Explanation:
Calculation:
The coordinate of the point [tex]P,M,N[/tex] can be obtained from the given Graph.
The coordinate of the point [tex]P[/tex] of [tex]\triangle\text{PMN}[/tex] is [tex](-1,1)[/tex].
The coordinate of the point [tex]N[/tex] of a triangle [tex]\triangle\text{PMN}[/tex] is [tex](2,6)[/tex].
The coordinates of the point [tex]M[/tex] of a triangle [tex]\triangle\text{PMN}[/tex] is [tex](-4,6)[/tex].
The image of triangle is created by the given rule,
[tex]\boxed{1.5(x,y)\rightarrow(1.5x,1.5y)}[/tex]
The new image of [tex]\triangle\text{PMN}[/tex] is [tex]\triangle\text{M'N'P'}[/tex].
The new coordinate of [tex]P[/tex] that is [tex]P'[/tex] is obtained as,
[tex]\boxed{\begin{aligned}1.5(x,y)&\rightarrow(1.5x,1.5y)\\1.5(-1,1)&\rightarrow(-1.5,1.5)\end{aligned}}[/tex]
The new coordinate of [tex]M[/tex] that is [tex]M'[/tex] is obtained as,
[tex]\boxed{\begin{aligned}1.5(x,y)&\rightarrow(1.5x,1.5y)\\1.5(-4,6)&\rightarrow(-6,9)\end{aligned}}[/tex]
The new coordinate of [tex]N[/tex] that is [tex]N'[/tex] is obtained as,
[tex]\boxed{\begin{aligned}1.5(x,y)&\rightarrow(1.5x,1.5y)\\1.5(2,6)&\rightarrow(3,9)\end{aligned}}[/tex]
Therefore, the coordinate for point [tex]M'[/tex] is [tex](-6,9)[/tex] and the coordinate for the point [tex]N'[/tex] is [tex](3,9)[/tex].
Thus, the correct option for the coordinates of end point of line segment is [tex]\fbox{\begin\\\ \bf option (b)\\\end{minispace}}[/tex].
Learn more:
1. A problem on triangle: https://brainly.com/question/7437053
2. A problem on transformation of triangle https://brainly.com/question/2992432
Answer details:
Grade: High school
Subject: Mathematics
Chapter: Triangle
Keywords: Equations, Triangle, dilate, Translate, image, size, x coordinate, y coordinate, shifted position endpoints, line segment, shifting, 1.5(x,y)=(1.5x,1.5y).