Respuesta :

we know that

if the figure is a rectangle

then

FG=EH -------> the height of the rectangle

FE=GH --------> the base of a rectangle

Let

x-------> the base of a rectangle

y-------> the height of a rectangle

The perimeter of the rectangle is equal to

[tex]Perimeter=2x+2y[/tex]

Step[tex]1[/tex]

Find the length of the base FE

the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

[tex]E(1,-1)\\F(-4,1)[/tex]

substitute in the formula

[tex]dFE=\sqrt{(1+1)^{2}+(-4-1)^{2}}[/tex]

[tex]dFE=\sqrt{29}[/tex] units

[tex]x=\sqrt{29}[/tex] units

Step[tex]2[/tex]

Find the length of the height FG

the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

[tex]F(-4,1)\\G(-3,4)[/tex]

substitute in the formula

[tex]dFG=\sqrt{(4-1)^{2}+(-3+4)^{2}}[/tex]

[tex]dFG=\sqrt{10}[/tex] units

[tex]y=\sqrt{10}[/tex] units

Step[tex]3[/tex]

Find the perimeter of the rectangle

[tex]Perimeter=2x+2y[/tex]

[tex]Perimeter=(2\sqrt{29} +2\sqrt{10})\ units[/tex]

therefore

the answer is

the perimeter of the rectangle is [tex](2\sqrt{29} +2\sqrt{10})\ units[/tex]

The perimeter of the rectangle is: 2√10 + 2√29.

Perimeter of a Rectangle

  • Perimeter of a rectangle = 2(length + width).

Thus, the perimeter of rectangle EFGH = 2(GH + HE

Using the distance formula, [tex]d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]:

GH = √29 units

HE = √10 units

Perimeter = 2(√10 + √29)

Perimeter = 2√10 + 2√29

Therefore, the perimeter of the rectangle is: 2√10 + 2√29.

Learn more about perimeter of rectangle on:

https://brainly.com/question/24571594