Respuesta :

A. H(x) = 4(x - 9)^2 - 17

B. H(x) = 4(x - 7)^2 - 19

C. H(x) = 4(x + 9)^2 - 17

D. H(x) = 4(x +7)^2 + 19

The answer is B. H(x) = 4(x - 7)^2 - 19

The equation which represents the transformation of [tex]H(x)=4x^2-16[/tex], will be [tex]H(x)=4(x+7)^2-19[/tex].

What is transformation  ?

Transformation is the act or process of changing completely. In this also the graph changes or transform.

We have,

[tex]H(x)=4x^2-16[/tex]

And

It shifted [tex]7[/tex] units to the right and [tex]3[/tex] units down.

And the parent quadratic function is in the form of [tex]f(x)=a(x-h)^2+k[/tex]

Here,

"[tex]h[/tex]" tells if the vertex of the parabola is going left or right.

"[tex]k[/tex]" determines if the vertex of the parabola is going up or down.

So, According to the question;

We have,

[tex](a)[/tex]   [tex]7[/tex] units to the right

[tex](b)[/tex]  [tex]3[/tex]  units down

So, Equation [tex]H(x)=4x^2-16[/tex]  have moved the vertex of the parabola  [tex]7[/tex]  units to the right and [tex]3[/tex] units down.

Now,

[tex]f(x)=a(x-h)^2+k[/tex]

[tex]H(x)=4x^2-16[/tex]

Rewrite in the above form,

[tex]H(x)=4(x)^2-16[/tex]

Shifting right means adding [tex]7[/tex] i.e. [tex]h=7[/tex] and going down means subtracting [tex]3[/tex] i.e. [tex]k=3[/tex],

So,

[tex]H(x)=4(x)^2-16[/tex]

[tex]H(x)=4(x+7)^2-16-3[/tex]

[tex]H(x)=4(x+7)^2-19[/tex]

Hence, we can say that the equation which represents the transformation of [tex]H(x)=4x^2-16[/tex] , is given by [tex]H(x)=4(x+7)^2-19[/tex]     .

To know more about transformation click here

https://brainly.com/question/10059147

#SPJ3