Respuesta :
[tex]\bf \begin{cases}
f(x)=2x\\
g(x)=2x-1\\
h(x)=\sqrt{x}
\end{cases}\qquad
\begin{array}{llll}
(f\circ g\circ h)(x)\\
(f[g\circ h])(x)\\
(\ f[\ g(\ h(x)\ )\ ]\ )
\end{array}\\\\
-----------------------------\\\\
g(\ h(x)\ )=2[h(x)]-1\implies 2\sqrt{x}-1
\\\\\\
f[\ g(\ h(x)\ )\ ]=2[\ g(\ h(x)\ )\ ]\implies 2(2\sqrt{x}-1)
\\\\\\
f[\ g(\ h(\quad 9\quad )\ )\ ]=2(2\sqrt{9}-1)\implies 4\sqrt{9}-1\implies 4\cdot 3-1\implies 11[/tex]
Answer:
10
Step-by-step explanation:
[tex]f(x)= 2x[/tex], [tex]g(x)= 2x-1[/tex], [tex]h(x)= \sqrt{x}[/tex]
(fogoh)(9)= f(g(h(9))
To find f(g(h(9)), first we find h(9)
[tex]h(x)= \sqrt{x}[/tex]
[tex]h(9)= \sqrt{9}=3[/tex]
Now we replace 3 for h(9)
f(g(h(9))= f(g(3)
We find g(3) using g(x)
[tex]g(x)= 2x-1[/tex]
[tex]g(3)= 2(3)-1=5[/tex]
Replace g(3) by 5
f(g(h(9))= f(g(3)=f(5)
Now we find f(5) using f(x)
[tex]f(x)= 2x[/tex]
[tex]f(5)= 2(5)=10[/tex]
So (fogoh)(9)= 10