Angles ∝ and β are the two acute angles in a right triangle. Use the relationship between sine and cosine to find the value of β if β > ∝. sin( x 2 + 20x) = cos(2x + 15x 2 ) A) 25° B) 28.5° C) 61.5° D) 65°

Respuesta :

Just did this problem it is C.

Answer:

The correct option is C.

Step-by-step explanation:

Given information: Angles α and β are the two acute angles ,  β > ∝.

Given equation is

[tex]\sin(\frac{x}{2}+20x)=\cos (2x+\frac{15x}{2})[/tex]

[tex]\cos(90-(\frac{x}{2}+20x))=\cos (2x+\frac{15x}{2})[/tex]        [tex][\because \sin (90-x)=\cos x][/tex]

Equating both the sides.

[tex]90-\frac{x}{2}-20x=2x+\frac{15x}{2}[/tex]

[tex]90=2x+\frac{15x}{2}+\frac{x}{2}+20x[/tex]

[tex]90=22x+\frac{16x}{2}[/tex]

[tex]90=22x+8x[/tex]

[tex]90=30x[/tex]

[tex]x=3[/tex]

The value of angles is

[tex]\frac{x}{2}+20x=\frac{3}{2}+20(3)=1.5+60=61.5[/tex]

[tex]2x+\frac{15x}{2}=2(3)+\frac{15(3)}{2}=6+22.5=28.5[/tex]

Since 61.5>28.5, therefore the value of β is 61.5. Option C is correct.