Respuesta :
Answer:
Ques 1)
[tex]\dfrac{y^8}{x^10}[/tex]
( option: A)
Ques 2)
[tex]\dfrac{7p^{15}}{3q^{12}}[/tex]
(Option B)
Ques 3)
[tex]\dfrac{25a^9b^{10}}{6}[/tex]
( Option: D)
Step-by-step explanation:
Ques 1)
[tex](\dfrac{x^{-4}y}{x^{-9}y^5})^{-2}\\\\\\=(x^{-4+9}y^{1-5})^{-2}\\\\=(x^5y^{-4})^{-2}\\\\=x^{5\times (-2)}y^{-4\times (-2)}\\\\=x^{-10}y^8\\\\=\dfrac{y^8}{x^10}[/tex]
( since, we know that:
[tex]\dfrac{x^m}{x^n}=x^{m-n}[/tex]
Also,
[tex](x^m)^n=x^{m\times n}[/tex] )
Hence, option: A is correct.
Ques 2)
[tex]\dfrac{28p^9q^{-5}}{12p^{-6}q^7}\\\\\\=\dfrac{28}{12}\times (p^{9+6}q^{-5-7})\\\\=\dfrac{7}{3}\times (p^{15}q^{-12})\\\\=\dfrac{7p^{15}}{3q^{12}}[/tex]
Hence, option: B is correct.
Ques 3)
[tex]=\dfrac{(5ab)^3}{30a^{-6}b^{-7}}\\\\=\dfrac{125a^3b^3}{30a^{-6}b^{-7}}\\\\=\dfrac{125}{30}\times (a^{3+6}b^{3+7})\\\\=\dfrac{25}{6}\times (a^9b^{10})\\\\=\dfrac{25a^9b^{10}}{6}[/tex]
Hence, option: D is true.
To solve the problem we must know about the exponent properties.
What are the basic exponent properties?
A few basic properties of the exponents are,
[tex]{a^m} \cdot {a^n} = a^{(m+n)}[/tex]
[tex]\dfrac{a^m}{a^n} = a^{(m-n)}[/tex]
[tex]\sqrt[m]{a^n} = a^{\frac{n}{m}}[/tex]
[tex](a^m)^n = a^{m\times n}[/tex]
[tex](m\times n)^a = m^a\times n^a[/tex]
Which expression is equivalent to [tex](\dfrac{x^{-4}y}{x^{-9}y^5})[/tex] ?
[tex](\dfrac{x^{-4}y}{x^{-9}y^5})^{-2}[/tex]
Using the property [tex]\dfrac{a^m}{a^n} = a^{(m-n)}[/tex],
[tex]=(x^{-4+9}\cdot y^{1-5})^{-2}\\\\=(x^5\cdot y^{-4})^{-2}\\\\[/tex]
Using the property [tex](a^m)^n = a^{m\times n}[/tex],
[tex]= x^{(5\times 2)}\cdot y^{(-4\times 2)}\\\\= x^{10}\cdot y^{-8}\\\\= \dfrac{x^{10}}{y^8}[/tex]
Thus, the solution of the expression is [tex]\dfrac{x^{10}}{y^8}[/tex].
Which expression is equal to Which expression is equivalent to [tex]\dfrac{28p^9q^{-5}}{12p^{-6}q^7}[/tex] ?
[tex]\dfrac{28p^9q^{-5}}{12p^{-6}q^7}[/tex]
Using the property [tex]\dfrac{a^m}{a^n} = a^{(m-n)}[/tex],
[tex]=\dfrac{28p^9q^{-5}}{12p^{-6}q^7}\\\\=\dfrac{7p^{(9+6)}\cdot q^{-5-7}}{3}\\\\=\dfrac{7p^{(15)}\cdot q^{-12}}{3}\\\\=\dfrac{7p^{(15)}} {3q^{12}}[/tex]
Thus, the solution to the expression is [tex]\dfrac{7p^{(15)}} {3q^{12}}[/tex].
Which expression is equivalent to [tex]\dfrac{(5ab)^3}{30a^{-6}b^{-7}}[/tex] ?
[tex]\dfrac{(5ab)^3}{30a^{-6}b^{-7}}[/tex]
Using the property [tex](a^m)^n = a^{m\times n}[/tex],
[tex]=\dfrac{5^3a^3b^3}{30a^{-6}b^{-7}}[/tex]
[tex]=\dfrac{125\cdot a^{(3+6)}\cdot b^{(3+7)}}{30}\\\\=\dfrac{25\cdot a^{9}\cdot b^{10}}{6}[/tex]
Thus, the solution of the expression is [tex]\dfrac{25a^{(3+6)}b^{(3+7)}}{6}[/tex].
Learn more about Exponents:
https://brainly.com/question/219134