Which expression is equivalent to 2^a+1/10a-5/10a/4a^2-1?
A 2a/(2a-1)^2
B 50a/(2a+1)^2
C (2a - 1)^2/2a
D (2a + 1)^2/50a

Which expression is equivalent to the expression below?
(x/x+4)/x
A x/x+4 * x/1
B x/x+4 * 1/x
C x+4/x * 1/x
D x+4/x * x/1

What is the quotient? n+3/2n-6/n+3/3n-9
A 2/3
B 3/2
C (n+3)^2/6(n-3)^2
D 6(n-3)^2/(n+3)^2

What is the product? a-3/15a * 5/a-3
A 1/3
B 1/3a
C 3a
D 3

What is the quotient? n+3/2n-6/n+3/3n-9
A 2/3
B 3/2
C (n+3)^2/6(n-3)^2
D 6(n-3)^2/(n+3)^2

What is the product? a-3/15a * 5/a-3
A 1/3
B 1/3a
C 3a
D 3

What is the product? 2a-7/a * 3a^2/2a^2-11a+14
A 3/a-2
B 3a/a-2
C 3a/a+2
D 3/a+2

What is the quotient? a-3/7 / 3-a/21
A -(a-3)^2/147
B (a-3)^2/147
C 3
D -3

Respuesta :

Answer:

1. D

2.B

3.B

4.B

5. B

6.D

Step-by-step explanation:

QUESTION 1

We want to simplify [tex]\frac{\frac{2a+1}{10a-5}}{\frac{10a}{4a^2-1}}[/tex].


Let us change the middle bar to a normal division sign to obtain,

[tex]\frac{2a+1}{10a-5}\div\frac{10a}{4a^2-1}[/tex].


We now multiply, the first fraction by the reciprocal of the second fraction to get,

[tex]\frac{2a+1}{10a-5}\times \frac{4a^2-1}{10a}[/tex].


We now factor to obtain,

[tex]\frac{2a+1}{5(2a-1)}\times \frac{(2a-1)(2a+1)}{10a}[/tex].


We cancel out common factors to get,


[tex]\frac{2a+1}{5(1)}\times \frac{(1)(2a+1)}{10a}[/tex].


We now multiply out to get,


[tex]\frac{(2a+1)^2}{50a}[/tex].


Ans:D


QUESTION 2

The given expression is [tex]\frac{\frac{x}{x+4} }{x}[/tex]


We change the middle bar to a normal division sign to get,


[tex]\frac{x}{x+4}\div x[/tex]


We now multiply by the reciprocal of the second fraction to obtain,


[tex]\frac{x}{x+4}\times \frac{1}{x}[/tex]

Ans:B


QUESTION 3

We want to simplify the quotient,

[tex]\frac{\frac{n+3}{2n-6}}{\frac{n+3}{3n-9}}[/tex].

We change the middle to a normal division sign to obtain,


[tex]\frac{n+3}{2n-6}\div\frac{n+3}{3n-9}[/tex].


We now multiply the first fraction by the reciprocal of the second fraction to get,

[tex]\frac{n+3}{2n-6}\times \frac{3n-9}{n+3}[/tex].


We factor to get,

[tex]\frac{n+3}{2(n-3)}\times \frac{3(n-3)}{n+3}[/tex].


We cancel out common factors to obtain,

[tex]\frac{1}{2(1)}\times \frac{3(1)}{1}[/tex].


We simplify to get,

[tex]\frac{3}{2}[/tex].

Ans:B

QUESTION 4

We want to find the product  [tex]\frac{a-3}{15a} \times\frac{5}{a-3}[/tex].


This multiplication is very simple to do. We just have to cancel out common factors to get,

[tex]\frac{1}{3a} \times\frac{1}{1}[/tex].


We now multiply out to get,

[tex]\frac{1}{3a}[/tex]


Ans:B


QUESTION 5.

We want to find the product [tex]\frac{2a-7}{a} \times \frac{3a^2}{2a^2-11a+14}[/tex].

We factor the denominator of the second fraction to obtain,

[tex]\frac{2a-7}{a} \times \frac{3a^2}{(2a-7)(a-2)}[/tex].

We now cancel out common factors to obtain,

[tex]\frac{1}{1} \times \frac{3a}{(1)(a-2)}[/tex].


We multiply out to get,


[tex]\frac{3a}{a-2}[/tex].


Ans:B


QUESTION 6

We want to find the quotient [tex]\frac{\frac{a-3}{7}}{\frac{3-a}{21} }[/tex].


We need to change the middle bar to a normal division sign to get,


[tex]\frac{a-3}{7}\div \frac{3-a}{21}[/tex]


We multiply by the reciprocal of the second function to get,


[tex]\frac{a-3}{7} \times \frac{21}{3-a}[/tex]


We factor the negative 1 from the denominator of the second fraction to get,

[tex]\frac{a-3}{7} \times \frac{21}{-1(a-3)}[/tex]


We now cancel common factors to get,


[tex]\frac{1}{1} \times \frac{3}{-1(1)}[/tex]


This simplifies to,

[tex]-3[/tex].

Ans: D


Two questions repeated











Answer:

1. D

2.B

3.B

4.B

5. B

6.D

Step-by-step explanation: