Respuesta :

irspow
The midpoint of a line segment is just the average of the coordinates of the endpoints.

(0+x)/2=-3  and (2+y)/2=2

x=-6 and 2+y=4

x=-6 and y=2

So point B is (-6,2)

Answer:

A= (-6, 2)

Step-by-step explanation:

Let ([tex]x_{1}[/tex]   [tex]y_{1}[/tex])  be the coordinates of A , let ( [tex]x_{2}[/tex] ,  [tex]y_{2}[/tex])   be the coordinate of B

and let ( [tex]x_{m}[/tex] ,  [tex]y_{m}[/tex])  be the midpoints of segment AB

To find the coordinates of A, we simply use the formula for calculating mid-points of segment

( [tex]x_{m}[/tex] ,  [tex]y_{m}[/tex])  =   [tex](\frac{x_{1} + x_{2} }{2}, \frac{y_{1} + y_{2} }{2})[/tex]

From the formula above;

[tex]x_{m}[/tex]  =  [tex]x_{1}[/tex] + [tex]x_{2}[/tex]    /   2    ---------------(1)

Similarly

[tex]y_{m}[/tex]  =    [tex]y_{1}[/tex]  + [tex]y_{2}[/tex]  /   2   --------(2)

From the question given;

 

 ( [tex]x_{m}[/tex] ,  [tex]y_{m}[/tex])   =  (-3, 2)    which implies:   [tex]x_{m}[/tex]= -3  and    [tex]y_{m}[/tex]=  2

similarly   ( [tex]x_{2}[/tex]  ,  [tex]y_{2}[/tex])   =   (0,2)    this implies that  [tex]x_{2}[/tex]  =  0 and  [tex]y_{2}[/tex] =2

From equation (1)

[tex]x_{m}[/tex]  =  [tex]x_{1}[/tex] + [tex]x_{2}[/tex]    /   2

we substitute   [tex]x_{m}[/tex]= -3   and       [tex]x_{2}[/tex]  =  0  into equation (1) to get  [tex]x_{1}[/tex]

[tex]x_{m}[/tex]  =  [tex]x_{1}[/tex] + [tex]x_{2}[/tex]    /   2

-3   =  [tex]x_{1}[/tex] + 0     / 2

cross multiply

[tex]x_{1}[/tex] + 0  =   -3 ×  2

[tex]x_{1}[/tex] =  -6

Also;

We substitute;  [tex]y_{m}[/tex]=  2 and [tex]y_{2}[/tex] =2  into equation (2)

[tex]y_{m}[/tex]  =    [tex]y_{1}[/tex]  + [tex]y_{2}[/tex]  /   2   --------(2)

2   =   [tex]y_{1}[/tex] +  2     / 2

cross multiply

[tex]y_{1}[/tex] +  2  =   2 ×  2

[tex]y_{1}[/tex] +  2   =  4

subtract 2 from both-side of the equation

[tex]y_{1}[/tex] +  2 -2  =  4 -2

[tex]y_{1}[/tex] =  2

[tex]x_{1}[/tex] =  -6   and  [tex]y_{1}[/tex]  =  2

Therefore;   Coordinate of A ([tex]x_{1}[/tex]   [tex]y_{1}[/tex])  =  (-6, 2)