contestada

A $104,000 selling price with $24,000 down at 8 1/2 % for 25 years results in a monthly payment of

Respuesta :

[tex]\bf \qquad \qquad \textit{Amortized Loan Value} \\\\ pymt=P\left[ \cfrac{\frac{r}{n}}{1-\left( 1+ \frac{r}{n}\right)^{-nt}} \right][/tex]

[tex]\bf \qquad \begin{cases} P= \begin{array}{llll} \textit{original amount deposited}\\ \end{array}\to & \begin{array}{rllll} 104000\\ -24000\\ ----\\ 80000 \end{array}\\ pymt=\textit{periodic payments}\\ r=rate\to 8\frac{1}{2}\%\to \frac{8\frac{1}{2}}{100}\to &0.085\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{payments are monthly} \end{array}\to &12\\ t=years\to &25 \end{cases}[/tex]


[tex]\bf pymt=80000\left[ \cfrac{\frac{0.085}{12}}{1-\left( 1+ \frac{0.085}{12}\right)^{-12\cdot 25}} \right][/tex]