Respuesta :

(x^a)(x^b)=x^(a+b)

(ab)(cd)=(a)(b)(c)(d)

x^-m=1/(x^m)


(3y^-4)(2y^-4)=
(3)(y^-4)(2)(y^-4)=
(6)(y^-8)=
6/(y^8)

Answer:

Product of [tex](3y^{-4})(2y^{-4})=6y^{-8}[/tex]

Step-by-step explanation:

Given : Expression [tex](3y^{-4})(2y^{-4})[/tex]

To find : The product of the given expression?

Solution :

[tex](3y^{-4})(2y^{-4})[/tex]

Applying property of exponent, [tex]x^a\times x^b=x^{a+b}[/tex]

Comparing with given expression x=y , a=-4 and b=-4

[tex]=(3)\times(2)\times(y^{-4+(-4)})[/tex]

Multiply 3 and 2,

[tex]=6\times(y^{-8})[/tex]

[tex]=6y^{-8}[/tex]

Therefore, Product of [tex](3y^{-4})(2y^{-4})=6y^{-8}[/tex]