Respuesta :
Answer:
The correct option is 3.
Step-by-step explanation:
Option 1,
A reflection across the y-axis,
[tex]P(x,y)\rightarrow P_1(-x,y)[/tex]
then reflection across the x-axis
[tex](x,y)\rightarrow (x,-y)[/tex]
[tex]P_1(-x,y)\rightarrow P_2(-x,-y)[/tex]
and then a 90° clockwise rotation about the origin.
[tex](x,y)\rightarrow (y,-x)[/tex]
[tex]P_2(-x,-y)\rightarrow P_3(-y,x)[/tex]
So the image of P(x,y) is P'(-y,x).
Option 2,
A 90° clockwise rotation about the origin
[tex]P(x,y)\rightarrow P_1(y,-x)[/tex]
and then a 180° rotation about the origin.
[tex](x,y)\rightarrow (-x,-y)[/tex]
[tex]P_1(y,-x)\rightarrow P_2(-y,x)[/tex]
So the image of P(x,y) is P'(-y,x).
Option 3,
A reflection across the x-axis,
[tex]P(x,y)\rightarrow P_1(x,-y)[/tex]
Followed by a 90° counterclockwise rotation about the origin.
[tex](x,y)\rightarrow (-y,x)[/tex]
[tex]P_1(x,-y)\rightarrow P_2(y,x)[/tex]
and then a reflection across the x-axis.
[tex](x,y)\rightarrow (x,-y)[/tex]
[tex]P_2(y,x)\rightarrow P_3(y,-x)[/tex]
So the image of P(x,y) is P'(y,-x).
Option 4,
A 90° counterclockwise rotation about the origin
[tex]P(x,y)\rightarrow P_1(-y,x)[/tex]
So the image of P(x,y) is P'(-y,x).
The third sequence is not equivalent to the others. Therefore the correct option is 3.