Respuesta :

das is difference of 2 perfect squares
remember
a^2-b^2=(a-b)(a+b)

so
25x^4=(5x^2)^2
16y^2=(4y^2)

(5x^2)^2-(4y)^2=(5x^2-4y)(5x+4y)
cannot be factored further

Answer:

[tex](5x^{2} + 4y),(5x^{2} - 4y) [/tex]

Step-by-step explanation:

Given  : [tex]25x^{4} - 16y^{2}[/tex].

To find : What is the completely factored form .

Solution : We have given  [tex]25x^{4} - 16y^{2}[/tex].

We can write it as

[tex](5x^{2})^{2} - (4y)^{2}[/tex]

Using the identity [tex]a^{2} - b^{2} = (a+b) (a-b)[/tex].

Here, a = [tex](5x^{2})[/tex] , b = [tex](4y)[/tex].

Then  ,

[tex](5x^{2})^{2} - (4y)^{2}[/tex] = [tex](5x^{2} + 4y)  , (5x^{2} - 4y) [/tex]

Therefore, [tex](5x^{2} + 4y),(5x^{2} - 4y) [/tex]