Respuesta :
das is difference of 2 perfect squares
remember
a^2-b^2=(a-b)(a+b)
so
25x^4=(5x^2)^2
16y^2=(4y^2)
(5x^2)^2-(4y)^2=(5x^2-4y)(5x+4y)
cannot be factored further
remember
a^2-b^2=(a-b)(a+b)
so
25x^4=(5x^2)^2
16y^2=(4y^2)
(5x^2)^2-(4y)^2=(5x^2-4y)(5x+4y)
cannot be factored further
Answer:
[tex](5x^{2} + 4y),(5x^{2} - 4y) [/tex]
Step-by-step explanation:
Given : [tex]25x^{4} - 16y^{2}[/tex].
To find : What is the completely factored form .
Solution : We have given [tex]25x^{4} - 16y^{2}[/tex].
We can write it as
[tex](5x^{2})^{2} - (4y)^{2}[/tex]
Using the identity [tex]a^{2} - b^{2} = (a+b) (a-b)[/tex].
Here, a = [tex](5x^{2})[/tex] , b = [tex](4y)[/tex].
Then ,
[tex](5x^{2})^{2} - (4y)^{2}[/tex] = [tex](5x^{2} + 4y) , (5x^{2} - 4y) [/tex]
Therefore, [tex](5x^{2} + 4y),(5x^{2} - 4y) [/tex]