ok, so the pyramids are similar, their heights are 8 and 24, small and large one
[tex]\bf \qquad \qquad \textit{ratio relations}
\\\\
\begin{array}{ccccllll}
&Sides&Area&Volume\\
&-----&-----&-----\\
\cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3}
\end{array} \\\\
-----------------------------\\\\
\cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\
-----------------------------\\\\
[/tex]
a)
their ratios [tex]\bf \cfrac{8}{24}\implies \cfrac{1}{3}[/tex]
so the small one is just 1/3 of the large one
b)
[tex]\bf \cfrac{s^2}{s^2}\implies \cfrac{8^2}{24^2}\implies \cfrac{64}{576}\implies \cfrac{1}{9}[/tex]
c)
[tex]\bf \cfrac{s^3}{s^3}\implies \cfrac{8^3}{24^3}\implies \cfrac{512}{13824}\implies \cfrac{1}{27}[/tex]
d)
[tex]\bf \cfrac{v}{648}=\cfrac{8^3}{24^3}\implies \cfrac{v}{648}=\cfrac{512}{13824}[/tex]
solve for "v"