Respuesta :
A point M on the unit circle could be represented by (x , y), which coordinates are nothing but cos Ф (for x) & sin Ф (for y, hence:
tan Ф = sin Ф / cos Ф ==> tan Ф (4/5) / (3/5) ==> tan Ф =(4/3).
Now let's calculate the angle: tan⁻¹Ф ==> tan⁻¹(4/3) ≈43°
tan Ф = sin Ф / cos Ф ==> tan Ф (4/5) / (3/5) ==> tan Ф =(4/3).
Now let's calculate the angle: tan⁻¹Ф ==> tan⁻¹(4/3) ≈43°
Answer:
[tex]tan{\theta}=\frac{4}{3}[/tex]
Step-by-step explanation:
A point M on the unit circle is represented as (x,y) for which the coordinates are [tex]cos{\theta}[/tex] for x and [tex]sin{\theta}[/tex] for y.
Now, we know that in unit circle [tex]tan{\theta}[/tex] is written as:
[tex]tan{\theta}=\frac{sin{\theta}}{cos{\theta}}[/tex]
=[tex]\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}[/tex]
Thus,the value of [tex]tan{\theta}=\frac{4}{3}[/tex].