Respuesta :
Answer: Option 2 is correct (3x+4)(3x+4)
Explanation:
we have general form of quadratic equation [tex]ax^2+bx+c[/tex]
Given quadratic is [tex]9x^2+24x+16[/tex]
We will use the formula for discriminant which is [tex]D=b^2-4ac[/tex]
On comparing the given quadratic equation with the general quadratic equation we get a=9 , b=24,c=16
substituting the values in the formula for discriminant we will get
[tex]24^2-4(9)(16)[/tex]=0
Now, to find x we have formula [tex]\frac{-b\pm\sqrt{D}} {2a}[/tex]
D=0 , b=24, c=16 substituting the values we will get
[tex]x=\frac{-24\pm0}{2*9} =\frac{-4}{3},\frac{-4}{3}[/tex]
factors are [tex](x+\frac{4}{3})(x+\frac{4}{3})= (3x+4)(3x+4)[/tex]