Match each pair of points to the equation of the line that is parallel to the line passing through the points.
Tiles
B(5, 2) and C(7, -5)
y = -0.5x − 3
D(11, 6) and E(5, 9)
y = -3.5x − 15
F(-7, 12) and G(3, -8)
y = 5x + 19
H(4, 4) and I(8, 9)
y = 1.25x + 4
J(7, 2) and K(-9, 8)
L(5, -7) and M(4, -12)

Respuesta :

Answer:

Step-by-step explanation:

Plato Answer simplified:

(4,4) (8,9) - y=1.25x+4

(5,2) (7,-5) - y=-3.5x-15

(11,6) (5,9) - y=-0.5x-3

(5,-7) (4,-12) - y=5x+19

Example of how to do it in your head if you have multiple choice:

Note the order, you start from right to left with the coordinates...

(4,4) (8,9) - y=1.25x+4

9   -    4     The Y's         5

8   -    4     The X's         4

                                      _

                                    1.25x

(5,2) (7,-5) - y=-3.5x-15

-5   -    2     The Y's        -7

7   -    5     The X's         2

                                       _

                                    -3.5x

(11,6) (5,9) - y=-0.5x-3

9   -    6     The Y's         3

5   -    11     The X's        -6

                                       _

                                    -0.5x

(5,-7) (4,-12) - y=5x+19

-12   -    -7     The Y's        -5

 4   -     5     The X's         -1

                                         _

                                         5x

aksnkj

The correct match for parallel lines should be DE for [tex]y = -0.5x - 3[/tex], BC for  [tex]y = -3.5x -15[/tex], LM for  [tex]y = 5x + 19[/tex] and HI for [tex]y = 1.25x + 4[/tex].

Given information:

The given pair of points are:

  1. B(5, 2) and C(7, -5)
  2. D(11, 6) and E(5, 9)
  3. F(-7, 12) and G(3, -8)
  4. H(4, 4) and I(8, 9)
  5. J(7, 2) and K(-9, 8)
  6. L(5, -7) and M(4, -12)

The given lines are:

  1. [tex]y = -0.5x - 3[/tex]
  2. [tex]y = -3.5x -15[/tex]
  3. [tex]y = 5x + 19[/tex]

[tex]y = 1.25x + 4[/tex]

Now, the slope of the lines passing through the given points will be,

[tex]m_{BC}=\dfrac{-5-2}{7-5}=\dfrac{-7}{2}=-3.5\\m_{DE}=\dfrac{9-6}{5-11}=\dfrac{-1}{2}=-0.5\\m_{FG}=\dfrac{-8-12}{3+7}=-2\\m_{HI}=\dfrac{9-4}{8-4}=\dfrac{5}{4}=1.25\\m_{JK}=\dfrac{8-2}{-9-7}=\dfrac{-6}{16}=-0.375\\m_{LM}=\dfrac{-12+7}{4-5}=\dfrac{5}{1}=5[/tex]

Now, the slope from the given equations of the lines is,

-0.5 for [tex]y = -0.5x - 3[/tex], -3.5 for  [tex]y = -3.5x -15[/tex], 5 for  [tex]y = 5x + 19[/tex] and 1.25 for [tex]y = 1.25x + 4[/tex].

For parallel lines, the slope is equal.

Therefore, the correct match for parallel lines should be DE for [tex]y = -0.5x - 3[/tex], BC for  [tex]y = -3.5x -15[/tex], LM for  [tex]y = 5x + 19[/tex] and HI for [tex]y = 1.25x + 4[/tex].

For more details. refer to the link:

https://brainly.com/question/14511992