Respuesta :
This is the concept of trigonometry, to solve the question we proceed as follows;
sec(x)=1/cosx
thus;
sec(205)=1/cos205
=1/-0.9063
=-1.1034
this implies that:
sec(205)<-1
sec(x)=1/cosx
thus;
sec(205)=1/cos205
=1/-0.9063
=-1.1034
this implies that:
sec(205)<-1
Answer:
(A) [tex]sec(205^{\circ})<-1[/tex]
Step by step explanation:
The given equation is:
[tex]sec(205^{\circ})[/tex]
which can be written as:
[tex]sec(205^{\circ})=\frac{1}{cos(205^{\circ})}[/tex]
Substituting the value of [tex]cos(205^{\circ})[/tex] in the above equation , we get
[tex]sec(205^{\circ})=\frac{1}{-0.906}[/tex]
[tex]sec(205^{\circ})=\frac{-1}{0.906}[/tex]
[tex]sec(205^{\circ})=-1.103[/tex]
Therefore, [tex]sec(205^{\circ})<-1[/tex]
Hence, option A is correct.