Respuesta :

This is the concept of trigonometry, to solve the question we proceed as follows;
sec(x)=1/cosx
thus;
sec(205)=1/cos205
=1/-0.9063
=-1.1034
this implies that:
sec(205)<-1

Answer:

(A) [tex]sec(205^{\circ})<-1[/tex]

Step by step explanation:

The given equation is:

[tex]sec(205^{\circ})[/tex]

which can be written as:

[tex]sec(205^{\circ})=\frac{1}{cos(205^{\circ})}[/tex]

Substituting the value of [tex]cos(205^{\circ})[/tex] in the above equation , we get

[tex]sec(205^{\circ})=\frac{1}{-0.906}[/tex]

[tex]sec(205^{\circ})=\frac{-1}{0.906}[/tex]

[tex]sec(205^{\circ})=-1.103[/tex]

Therefore, [tex]sec(205^{\circ})<-1[/tex]

Hence, option A is correct.