Respuesta :
7. At constant pressure, V1/T1 = V2/T2
V1/T1 = V2/T
2680/268.15 = 1320 / T2
T2 = 520.53 K = 247.38 degrees Celsius
8. Using the same equation as number 7.
V1/T1 = V2/T
22600/294.15 = V2 / 258.15
V2 = 2281.80 cm^3
9. Using the same equation,
V1/T1 = V2/T
2650/T1 = V2 / 2T1
V2 = 1300 cm^3
10. At constant pressure, V1/T1 = V2/T2
V1/T1 = V2/T
2105/851.7 = V2 / 563.7
V2 = 69.49 mL
V1/T1 = V2/T
2680/268.15 = 1320 / T2
T2 = 520.53 K = 247.38 degrees Celsius
8. Using the same equation as number 7.
V1/T1 = V2/T
22600/294.15 = V2 / 258.15
V2 = 2281.80 cm^3
9. Using the same equation,
V1/T1 = V2/T
2650/T1 = V2 / 2T1
V2 = 1300 cm^3
10. At constant pressure, V1/T1 = V2/T2
V1/T1 = V2/T
2105/851.7 = V2 / 563.7
V2 = 69.49 mL
Answer: 7. The new temperature of the neon gas is 520 K.
8. The volume of the balloon when it’s placed in a freezer is 2.3 L.
9. The new volume of the gas is 1.25L.
10. The new volume is 0.07 L.
Explanation: Charles' Law: This law states that volume is directly proportional to the temperature of the gas at constant pressure and number of moles.
[tex]V\propto T[/tex] (At constant pressure and number of moles)
[tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]
[tex]V_1[/tex] = initial volume of neon gas= 680 ml= 0.68 L
[tex]T_1[/tex] = initial temperature =[tex]-5^0C=(-5+273)K=268K[/tex]
[tex]V_2[/tex] = final volume of neon gas = 1.32 L
[tex]T_2[/tex] = final temperature = ?
[tex]\frac{0.68}{268}=\frac{1.32}{T_2}[/tex]
[tex]T_2=520K[/tex]
8. [tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]
[tex]V_1[/tex] = initial volume of helium gas = 2600 ml = 2.6L
[tex]T_1[/tex] = initial temperature helium gas =[tex]21^0C=(21+273)K=294K[/tex]
[tex]V_2[/tex] = final volume helium gas=?
[tex]T_2[/tex] = final temperature of helium gas = [tex]-15^0C=(-15+273)K=258K[/tex]
[tex]\frac{2.6}{294}=\frac{V_2}{258}[/tex]
[tex]V_2=2.3L[/tex]
9. [tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]
[tex]V_1[/tex] = initial volume of ammonia gas = 650 ml = 0.65L
[tex]T_1[/tex] = initial temperature helium gas =T K
[tex]V_2[/tex] = final volume helium gas=[ ?
[tex]T_2[/tex] = final temperature of helium gas = [tex]2\times T=2T K[/tex]
[tex]\frac{0.65}{T}=\frac{V_2}{2T}[/tex]
[tex]V_2=1.25L[/tex]
10. [tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]
[tex]V_1[/tex] = initial volume =105 ml = 0.105 L
[tex]T_1[/tex] = initial temperature helium gas =[tex]392^0F=473K[/tex]
[tex]V_2[/tex] = final volume helium gas= ?
[tex]T_2[/tex] = final temperature of helium gas = [tex]104^0F=313K[/tex]
[tex]K=(F+ 459)\times \frac{5}{9})[/tex]
[tex]\frac{0.105}{473}=\frac{V_2}{313}[/tex]
[tex]V_2=0.07L[/tex]