contestada

Use the formula R = 6e12.77x, where x is the blood alcohol concentration and R, as a percent, is the risk of having a car accident. What blood alcohol concentration corresponds to a 50% risk of a car accident?

Respuesta :

[tex]R=6e^{12.77x} [/tex]
[tex]50=6e^{12.77x} [/tex]
[tex] \frac{50}{6}= e^{12.77x} [/tex]
[tex]log \frac{50}{6}=log( e^{12.77x}) [/tex]
[tex]0.920818754=12.77x[/tex]
[tex]x=0.07[/tex]

Answer:

0.1660 ( approx )

Step-by-step explanation:

Given,

The percentage of risk of having a car accident is,

[tex]R=6e^{12.77x}----(1)[/tex]

Where, x is the blood alcohol concentration,

From equation (1),

[tex]\frac{R}{6}=e^{12.77x}[/tex]

Taking natural log both sides,

[tex]ln(\frac{R}{6})=ln(e^{12.77x})[/tex]

[tex]ln(\frac{R}{6})=12.77xln(e)[/tex]

Since, ln(e) = 1,

[tex] ln(\frac{R}{6})=12.77x[/tex]

[tex]\implies x = \frac{ln(\frac{R}{6})}{12.77}[/tex]

R = 50 %,

[tex]\implies x=\frac{ln(\frac{50}{6})}{12.77}[/tex]

[tex]=\frac{2.1202635362}{12.77}[/tex]

[tex]=0.16603473267\approx 0.1660[/tex]