Respuesta :
First find the radius which is the Distance from the Center to the Circumference of the circle, using the distance formula:
D^2 = (1-4)^2 + (4-8)^2 = 9+ 16 =25
D = 5 = R
R^2 = (x-h)^2 + (y-k)^2
25 = (x-1)^2 +(y-4)^2 B
D^2 = (1-4)^2 + (4-8)^2 = 9+ 16 =25
D = 5 = R
R^2 = (x-h)^2 + (y-k)^2
25 = (x-1)^2 +(y-4)^2 B
Answer:
B) (x - 1)² + (y - 4)² = 25.
Step-by-step explanation:
Given : A circle with a center at (1, 4) where a point on the circle is (4, 8).
To find : Write the equation of a circle.
Solution : We have given that center (1 ,4)
A point on a circle (4 ,8).
Distance between center and point on circle is called diameter .
Distance formula : [tex]\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex].
Diameter = [tex]\sqrt{(4-1)^{2}+(8-4)^{2}}[/tex].
Diameter = [tex]\sqrt{(3)^{2}+4)^{2}}[/tex].
Diameter = [tex]\sqrt{9 +16}[/tex].
Diameter = [tex]\sqrt{25}[/tex].
Diameter = 5.
Radius = 2.5
Equation of center = (x - h)² + (y - k)² = r².
Where , (h , k) in coordinates of center and r is radius.
Equation of circle : (x - 1)² + (y - 4)² = 5².
(x - 1)² + (y - 4)² = 25.
Therefore, B) (x - 1)² + (y - 4)² = 25.