Respuesta :

Given: <SUR ≡ <TVR  and SU≡TV

Prove Δ SUR  ≡  Δ TVR.

Consider Δ SUR and ΔTVR:

a) SU≡TV (given)

b) <SUR ≡ <TVR  (given)

c) <SRU ≡ <TRV (Vertical angle or opposite angle)

d) Then we have 2 angles and one side  Δ SUR that are congruent to same in the corresponding ΔTVR===> Theorem

 " If two angles and the non-included side of one triangle are congruent to the corresponding parts of another triangle, the triangles are congruent."

Hence both triangle are congruent  AAS, as per the above theorem