Respuesta :

use quadratic formula

u'll get x= (27+3)/2*9 and (27-3)/2*9

x=5/3 and 4/3

Answer:

The zeros of the function are [tex]\frac{5}{3}[/tex] and [tex]\frac{4}{3}[/tex].

Step-by-step explanation:

The given function is

[tex]f(x)=9x^2-27x+20[/tex]

Equate f(x)=0 to find the zeroes of the function.

[tex]9x^2-27x+20=0[/tex]

Using splitting the middle terms method, the middle term can be written as -15x-12x.

[tex]9x^2+(-15x-12x)+20=0[/tex]

[tex](9x^2-15x)+(-12x+20)=0[/tex]

Taking out common factors from each parenthesis.

[tex]3x(3x-5)-4(3x-5)=0[/tex]

[tex](3x-5)(3x-4)=0[/tex]

Using zero product property, we get

[tex]3x-5=0\Rightarrow x=\frac{5}{3}[/tex]

[tex]3x-4=0\Rightarrow x=\frac{4}{3}[/tex]

Therefore the zeros of the function are [tex]\frac{5}{3}[/tex] and [tex]\frac{4}{3}[/tex].